
S1 Appendix. Agent-based Models and Numerical Methods

Model of the chemotaxis pathway

We used a standard model of E. coli chemotaxis [1–5] in which the cell relays information from the external
environment to the flagellar motor through a signaling cascade triggered by the binding of ligand to
transmembrane chemoreceptors (parameters in S1 Table). The receptors form cooperative clusters, the
activity of which is described by a two-state model where the activity a is determined by the free energy
difference F (in units of kBT ) between the active and inactive states

a =
1

1 + eF
. (S1)

Two terms, F = Fm(m) + FC(C), contribute to the free energy. The former depends on the methylation
level m of the receptor

Fm(m) = ε0 + ε1m, (S2)

with constants ε0 and ε1, while the latter depends on the ligand concentration C

FC(C) = NRec ln
1 + C/Ki

1 + C/Ka
. (S3)

where Ka and Ki are the ligand dissociation constants of the active and inactive states and NRec is the
degree of cooperativity of the cluster, i.e. the average size of the subclusters that switch as all-or-none
units within the cluster of receptors.

As the external environment signals changes in FC(C), the receptor adapts via methylation and
demethylation to control Fm(m), trying to maintain an activity level a0 independent of the environment.
The methylation kinetics is described by Eq (4) of [3]

dm

dt
= VR

1− a
KR + 1− a

− VB(a)
a

KB + a
, (S4)

where VR and VB(a) = VB(0)
(
1 + θ(a− aB)a−aB1−aB rB

)
(θ is the Heaviside function and aB = 0.74 and

rB = 4.0) are the methylation/demethylation rates of the proteins CheR and CheB, and KR and KB

are their the dissociation constants respectively. Because ε1 < 0 (S1 Table), Eqs (S1)–(S4) show that
methylation and demethylation reactions tends to maintain the system at a constant activity level a0.

Assuming the signal transduction is fast compared to adaptation kinetics, the receptor activity determines
the concentration of the response regulator CheY-P, Y (a) = αa with α constant. CheY-P then binds to the
flagellar motor complex, modulating its switching between rotating clockwise (CW) or counterclockwise
(CCW), which are Poisson processes with rates from CCW to CW as λCCW (Y ) and from CW to CCW as
λCW (Y )

λCCW,CW (Y ) = ω exp (∓G(Y )) , with G(Y ) =
ε2
4
− ε3

2

1

1 +K/Y
, (S5)

where ω, ε2, ε3, and K are constants.
The motor state of each flagellum determines its conformation to be in one of normal, curly-1, and

semi-coiled. The flagellar conformations in turn determine the cell’s motility state (run or tumble). For a
single-flagellum cell, the motor states CCW and CW corresponds to the motility states run and tumble,
and we can write λR = λCCW and λT = λCW as the switching rates from run to tumble and from tumble
to run, respectively [4].

Analytical approximations

In this section we show how the standard bacterial chemotaxis model just described maps onto the minimal
model of run-and-tumble navigation used for analytical derivations in the main text. Doing so requires
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making simplifying assumptions. In S1 Fig D,F we verify the validity of these approximations by running
agent-based simulations with and without such simplifications.

Following [4] methylation-demethylation kinetics are modeled as a linear relaxation around the adapted
level of methylation m0(C) that maintains a0. From Eqs (S1)–(S4) we get

dm

dt
= −m−m0(C)

tM
, (S6)

where tM is the adaptation time and

m0(C) =
1

ε1

(
F0 −NRec ln

1 + C/Ki

1 + C/Ka
− ε0

)
, with F0 = − ln (1/a0 − 1) . (S7)

so that when m = m0(C) it follows that F = F0 and a = a0. Substituting in Eq (S6) we obtain:

dF

dt
= −F − F0

tM
+NRec d

dt
ln

1 + C/Ki

1 + C/Ka
= −F − F0

tM
+NRec

(
1

Ki/C + 1
− 1

Ka/C + 1

)
d

dt
lnC, (S8)

where d/dt = ∂/∂t+ Ẋ · ∇ is the material derivative along the path of the cell. Comparing this equation
with Eq (1) in the main text, we define the perceived signal as the log-concentration

φ = ln
C

Ki
, (S9)

while the receptor gain is concentration-dependent

N = NRec

(
1

Ki/C + 1
− 1

Ka/C + 1

)
. (S10)

The concentration-dependent factor is always less than 1, and as C increases this factor contributes to a
smaller gain. Within the range of sensitivity of the receptor, i.e. when Ki � C � Ka, this factor is close
to 1 and we obtain the log-sensing approximation. In this case, Eq (S7) can be further simplified to

m0(C) ≈
1

ε1

(
F0 −NRec ln

C

Ki
− ε0

)
, with F0 = − ln (1/a0 − 1) . (S11)

Given constant Poisson switching rates λR and λT , the probability to be running is determined by
r = λT / (λR + λT ). From Eq (S5) and the definition Y = αa = α/

(
1 + eF

)
we can write

r(F ) =
1

1 + λR
λT

=
1

1 + exp
(
− ε22 + ε3

1
1+K

α (1+eF )

) . (S12)

Thus the probability to run r is a monotonically increasing function of the free energy F . Its shape is
almost identical to the standard sigmoidal function 1/ (1 + exp (−H (F − δ))) with a scaling H and shift δ.
Linearly expanding both expressions and matching zeroth and first order we obtain:

δ = − ln ((2ε3/ε2 − 1)α/K − 1)

H = ε3e
−δ

(
ε2
2ε3

)2
K

α
.

(S13)

For the parameters chosen we have δ ≈ 0 (S1 Table). Therefore, r = λT / (λR + λT ) ≈ 1/ (1 + exp (−HF )).

Agent-based simulations

The agent-based chemotaxis simulations were performed using Euler’s method as described previously [1,
4, 6, 7]. At each time, each cell moves forward or stays in place according to its motility state (run or
tumble), which also determines whether its direction changes with rotational diffusion coefficients DR or
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DT . Once the position, direction and local ligand concentrations are updated, the adaptation equation is
integrated and the free energy difference and activity of the receptors is updated. This in turn determines
the switching rates according to Eq (S5) and Y (t) = αa(t), and the motor state is changed if a random
number drawn exceeds the probability to switch over the time step. After that the motor state determines
the flagellum state and subsequently the cell motility state with rules and parameters as in [4], completing
one time step.

We used three different types of agent-based simulation:

1. The full nonlinear simulation integrated equations Eqs (S1)–(S5) and served as our reference model
of bacterial chemotaxis against which we tested our approximations (S1 Fig F).

2. The second model [1, 4] used linear adaptation kinetics replacing Eq (S4) with Eqs (S6)–(S7). This
model was used to generate Fig 3 as well as the scatter plot in Fig 1A. Note that for the latter, the
values of the parameters tM , f0, v0, DR and DT where chosen according to random distributions to
match the phenotypic heterogeneity measured in wild type population of E. coli (see below).

3. The third model was the same as the second one with the added simplification that the cell was
assumed to be perfectly log sensing: Eq (S11) was used instead of Eq (S7). This model was used to
generate the heat map in Fig 1A.

Simulation setup

In Fig 1A heat map, model 3 was used to generate 104 sample trajectories that were each 200 seconds long
— sufficient for the cells to reach steady state — for each parameter set τE and τD0. We used constant run
speed v0 = 20µm/s, memory length tM = 10 s, and adapted probability to run r0 = 0.8 for all cells and
all parameter sets. The gradient length scale L and rotational diffusion coefficients DR and DT were then
determined by each timescale ratios. We started the cells at the bottom of an exponential gradient where
the initial concentration is Ci = 0.1 mM .

In Fig 1A scatter plot, model 2 together with the noisy gene expression model and parameter values
as in [7] was used to generate 16,000 cells with different run speeds v0, memory timescales tM and run
probabilities r0. We varied DR and DT across cells to account for variations in the cell lengths and their
effect on the rotational diffusion coefficients. Noting that the coefficient of variation (CV) of the E. coli
cell lengths is ∼ 15% [8], and that the rotational diffusion coefficient of an ellipsoid with major axis (length
l) parallel to the direction of motion has DR ∼ l−3 [9], we estimated the CV of DR to be about 3 times
that of the cell lengths, or ∼ 50%. Therefore, we sampled DR from a log-normal distribution (to make sure
DR > 0) with mean 0.062 s−1 [9] and standard deviation 0.03 s−1. Assuming that DT is affected similarly
by the cell length, we fixed the ratio DT /DR ≈ 37 across all cells. We simulated the cells in a quasi-linear
gradient (fit from experimental data as described in [7]) of methyl-aspartate that varies from 0 to 1 mM
over 10 mm. Near the bottom of the gradient (at x = 1 mm) we calculated L = 1500 µm and near the top
of the gradient (at x = 9 mm) we found L = 4800 µm.

In Fig 3 model 2 was used to generate 104 sample trajectories for each parameter set τD0 = 1 and
τE = 0.1, 1, 3, for a total time of 650 seconds in the exponential gradient, 2000 seconds in the linear
gradient, and 3000 seconds for the localized source. We used constant run speed v0 = 20µm/s and adapted
probability to run r0 = 0.8 for all cells and all parameter sets. In all cases the initial length scale where the
cells start was Li = 1000 µm, from which we determined the cell memory tM and the diffusion coefficients
DR and DT using the timescale ratios.

References

1. Dufour YS, Fu X, Hernandez-Nunez L, Emonet T. Limits of feedback control in bacterial chemotaxis.
PLoS Comput Biol. 2014 Jun;10:e1003694.

2. Si G, Wu T, Ouyang Q, Tu Y. Pathway-based mean-field model for Escherichia coli chemotaxis.
Phys Rev Lett. 2012 Jul;109(4):048101.

3



3. Shimizu TS, Tu Y, Berg HW. A modular gradient-sensing network for chemotaxis in Escherichia
coli revealed by responses to time-varying stimuli. Mol Syst Biol. 2010 Jun;6:382–395.

4. Sneddon MW, Pontius W, Emonet T. Stochastic coordination of multisple actuators reduce latency
and improves chemotactic response in bacteria. Proc Natl Acad Sci U S A. 2012 Jan;109(2):805–810.

5. Tu Y. Quantitative modeling of bacterial chemotaxis signal amplification and accurate adaptation.
Annu Rev Biophys. 2013 Feb;42:337–359.

6. Frankel NW, Pontius W, Dufour YS, Long J, Hernandez-Nunez L, et al. Adaptability of non-genetic
diversity in bacterial chemotaxis. eLife. 2014 Oct;10.7554/eLife.03526.

7. Waite AJ, Frankel NW, Dufour YS, Johnston JF, Long J, et al. Non-genetic diversity modulates
population performance. Mol Syst Biol. 2016 Forthcoming.

8. Taheri-Araghi S, Bradde S, Sauls JT, Hill NS, Levin PA, et al. Cell-Size Control and Homeostasis in
Bacteria. Curr Biol. 2015 Feb;25:385–391.

9. Berg HC. Random walks in biology. Princeton: Princeton University Press; 1983.

4


